379 research outputs found

    Correctness of Velocity Evaluation of System Using Spatial Filter

    Get PDF
    In this paper, a velocity measurement method using the spatial filter is presented. Luminous emitance of the surface passing through the moving spatial filter and optical set is projected to the active area of photo-detector. The velocity determination is based on the frequency spectrum evaluation of the photo-detector output signal. The formula for velocity computing is derived first. Then, correctness of velocity evaluation in dependence on the surface and measuring system properties is discussed

    Simplified Frame and Symbol Synchronization for 4–CPFSK with h=0.25

    Get PDF
    This paper examines the problem of rapid frame and symbol synchronization techniques intended particularly for constant envelope modulation formats M–CPFSK with modulation index h=1/M which are used in strictly bandwidth limited narrowband industrial applications. The data aided and non data aided versions of the algorithm based on digital frequency discrimination are discussed and compared against the synchronization techniques found in literature. Sample wise pattern correlation technique for joint frame and symbol synchronization is also studied. With the focus on a practical digital implementation the advantages and disadvantages of the described approaches are discussed

    Implementation of Industrial Narrow Band Communication System into SDR Concept

    Get PDF
    The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected

    Valence modulations in CeRuSn

    Get PDF
    CeRuSn exhibits an extraordinary room temperature structure at 300~K with coexistence of two types of Ce ions, namely trivalent Ce3+^{3+} and intermediate valent Ce(4δ)+^{(4-\delta)+}, in a metallic environment. The ordered arrangement of these two Ce types on specific crystallographic sites results in a doubling of the unit cell along the cc-axis with respect to the basic monoclinic CeCoAl-type structure. Below room temperature, structural modulation transitions with very broad hysteresis have been reported from measurements of various bulk properties. X-ray diffraction revealed that at low temperatures the doubling of the CeCoAl type structure is replaced by a different modulated ground state, approximating a near tripling of the basic CeCoAl cell. The transition is accompanied by a significant contraction of the cc axis. We present new x-ray absorption near-edge spectroscopy data at the Ce L3_{3} absorption edge, measured on a freshly cleaved surface of a CeRuSn single crystal. In contrast to a previous report, the new data exhibit small but significant variations as function of temperature that are consistent with a transition of a fraction of Ce3+^{3+} ions to the intermediate valence state, analogous to the γα\gamma \rightarrow \alpha transition in elemental cerium, when cooling through the structural transitions of CeRuSn. Such results in a valence-modulated state

    Field-Induced Magnetic and Structural Domain Alignment in PrO2

    Full text link
    We present a neutron diffraction study of the magnetic structure of single crystal PrO2 under applied fields of 0-6 T. As the field is increased, changes are observed in the magnetic Bragg intensities. These changes are found to be irreversible when the field is reduced, but the original intensities can be recovered by heating to T > 122 K, then re-cooling in zero field. The antiferromagnetic ordering temperature TN = 13.5 K and the magnetic periodicity are unaffected by the applied field. We also report measurements of the magnetic susceptibility of single crystal PrO2 under applied fields of 0-7 T. These show strong anisotropy, as well as an anomaly at T = 122 +/- 2 K which coincides with the temperature TD = 120 +/- 2 K at which a structural distortion occurs. For fields applied along the [100] direction the susceptibility increases irreversibly with field in the temperature range TN < T < TD. However, for fields along [110] the susceptibility is independent of field in this range. We propose structural domain alignment, which strongly influences the formation of magnetic domains below TN, as the mechanism behind these changes.Comment: 11 pages, 13 figures, 5 tables. Minor typographical changes in v

    Low-coordinate iridium NHC complexes derived from selective and reversible C–H bond activation of fluoroarenes

    Get PDF
    Interaction of the reactive 14 VE {Ir(IBioxMe4)3}+ fragment with fluoroarenes results exclusively in ortho-C–H bond oxidative addition and formation of 16 VE Ir(III) derivatives [Ir(IBioxMe4)3(Ar)H]+ (Ar = 2-C6H4F, 2,3-C6H3F2, 2,4,6-C6H2F3). The C–H bond activation reactions occur under mild conditions and are reversible

    Field-induced commensurate long-range order in the Haldane-gap system NDMAZ

    Full text link
    High-field neutron diffraction studies of the new quantum-disordered S=1 linear-chain antiferromagnet Ni(C5_5H14_{14}N2_2)2_2N3_3(ClO4_4) (NDMAZ) are reported. At T=70 mK, at a critical field Hc=13.4H_c=13.4 T applied along the (013) direction, a phase transition to a commensurate N\'{e}el-like ordered state is observed. The results are discussed in the context of existing theories of quantum phase transitions in Haldane-gap antiferromagnets, and in comparions with previous studies of the related system Ni(C5_5H14_{14}N2_2)2_2N3_3(PF6_6)

    Biophysical characterization of a protein for structure comparison : methods for identifying insulin structural changes

    Get PDF
    Although protein structure has been studied for many decades it remains the case that we cannot state with confidence whether two samples have the same molecular structure, particularly in solution. The increasing number of biosimilar biopharmaceutical drugs that are being tested means this is not an academic exercise. In this work we consider how four well-established techniques: dynamic light scattering (DLS), circular dichroism (CD), nuclear magnetic resonance spectroscopy (NMR), and molecular modelling can be combined to provide information about the supposedly well-understood protein insulin. A goal of this work was to establish a systematic means of detecting differences between insulin samples as a function of pH, temperature, and the presence or absence of zinc, all of which are known to change the oligomerisation state and to affect molecular structure. We used the recently developed Secondary Structure Neural Network (SSNN) circular dichroism algorithm to facilitate analysis of the CD spectra

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore